Pular para o conteúdo principal

Pufferfish and humans share the same genes for teeth

Puffer fish.
Credit: © Andrea Izzotti / Fotolia
Human teeth evolved from the same genes that make the bizarre beaked teeth of the pufferfish, according to new research by an international team of scientists.
The study, led by Dr Gareth Fraser from the University of Sheffield's Department of Animal and Plant Sciences, has revealed that the pufferfish has a remarkably similar tooth-making programme to other vertebrates, including humans.
Published in the journal PNAS, the research has found that all vertebrates have some form of dental regeneration potential. However the pufferfish use the same stem cells for tooth regeneration as humans do but only replace some teeth with elongated bands that form their characteristic beak.
The study's authors, which include researchers from the Natural History Museum London and the University of Tokyo, believe the research can now be used to address questions of tooth loss in humans.
"Our study questioned how pufferfish make a beak and now we've discovered the stem cells responsible and the genes that govern this process of continuous regeneration. These are also involved in general vertebrate tooth regeneration, including in humans," Dr Fraser said.
He added: "The fact that all vertebrates regenerate their teeth in the same way with a set of conserved stem cells means that we can use these studies in more obscure fishes to provide clues to how we can address questions of tooth loss in humans."
The unique pufferfish beak is one of the most extraordinary forms of evolutionary novelty. This bizarre structure has evolved through the modification of dental replacement.
The beak is composed of four elongated 'tooth bands' which are replaced again and again. However, instead of losing teeth when they are replaced, the pufferfish fuses multiple generations of teeth together, which gives rise to the beak, enabling them to crush incredibly hard prey.
Students at Sheffield have access to the latest innovations in animal and plant sciences -- giving them an opportunity to deepen human understanding of organisms, ecosystems and the interdependencies of life to build a sustainable future.
Alex Thiery, a PhD student at the University of Sheffield who contributed to the study said: "We are interested in the developmental origin of the pufferfish beak as it presents a special opportunity to understand how evolutionary novelty can arise in vertebrates more generally.
"Vertebrates are extraordinarily diverse, however this doesn't mean that they are dissimilar in the way in which they develop. Our work on the pufferfish beak demonstrates the dramatic effect that small changes in development can have."
Common origins for hair, feathers and shark skin teeth
In an additional study published in the journal EvoDevo, Dr Gareth Fraser and his team from the University of Sheffield have also found that shark skin teeth (tooth-like scales called denticles) have the same developmental origins as reptile scales, bird feathers and human hair.
Previous studies have revealed that human hair, reptile scales and bird feathers evolved from a single ancestor -- a reptile that lived 300 million years ago -- but this new study from the Fraser Lab at Sheffield has found that the skin teeth found on sharks also developed from the same genes.
Sharks belong to a more basal group of vertebrates and their scales have been observed in the fossil record over the course of 450 million years of evolution, so the Sheffield researchers believe this indicates that all vertebrates, whether they live on land or in the sea, share the same developmental programme for skin, teeth and hair that has remained relatively unchanged throughout vertebrate evolution.
"Our study suggests the same genes are instrumental in the early development of all skin appendages from feathers and hair to shark skin teeth. Even though the final structures are very different this paper reveals that the developmental origins of all these structures are similar. Evolution has therefore used these common underpinnings as a foundation that can be modified over time to produce the vast diversity of skin structures seen in vertebrates," Dr Fraser added.
Postado por David Araripe

Comentários

Postagens mais visitadas deste blog

CONSERVAÇÃO DE ALIMENTOS E A EQUAÇÃO DE ARRHENIUS por Carlos Bravo Diaz, Universidade de Vigo, Espanha

Traduzido por Natanael F. França Rocha, Florianópolis, Brasil  A conservação de alimentos sempre foi uma das principais preocupações do ser humano. Conhecemos, já há bastante tempo, formas de armazenar cereais e também a utilização de azeite para evitar o contato do alimento com o oxigênio do ar e minimizar sua oxidação. Neste blog, podemos encontrar diversos ensaios sobre os métodos tradicionais de conservação de alimentos. Com o passar do tempo, os alimentos sofrem alterações que resultam em variações em diferentes parâmetros que vão definir sua "qualidade". Por exemplo, podem sofrer reações químicas (oxidação lipídica, Maillard, etc.) e bioquímicas (escurecimento enzimático, lipólise, etc.), microbianas (que podem ser úteis, por exemplo a fermentação, ou indesejáveis caso haja crescimento de agentes patogênicos) e por alterações físicas (coalescência, agregação, etc.). Vamos observar agora a tabela abaixo sobre a conservação de alimentos. Por que usamo

Two new proteins connected to plant development discovered by scientists

The discovery in the model plant Arabidopsis of two new proteins, RICE1 and RICE2, could lead to better ways to regulate plant structure and the ability to resist crop stresses such as drought, and ultimately to improve agricultural productivity, according to researchers at Texas A&M AgriLife Research. Credit: Graphic courtesy of Dr. Xiuren Zhang, Texas A&M AgriLife Research The discovery of two new proteins could lead to better ways to regulate plant structure and the ability to resist crop stresses such as drought, thus improving agriculture productivity, according to researchers at Texas A&M AgriLife Research. The two proteins, named RICE1 and RICE2, are described in the May issue of the journal eLife, based on the work of Dr. Xiuren Zhang, AgriLife Research biochemist in College Station. Zhang explained that DNA contains all the information needed to build a body, and molecules of RNA take that how-to information to the sites in the cell where they can be used

Cerque-se de pessoas melhores do que você

by   Guilherme   on   6 de abril de 2015   in   Amigos ,  Valores Reais A vida é feita de  relações . Nenhuma pessoa é uma ilha. Fomos concebidos para evoluir, não apenas do ponto-de-vista coletivo, como componentes da raça humana, cuja inteligência vai se aprimorando com o decorrer dos séculos; mas principalmente da perspectiva individual, como seres viventes que precisam uns dos outros para crescer, se desenvolver e deixar um  legado útil  para os que vivem e os que ainda irão nascer. E, para tirar o máximo proveito do que a vida tem a nos oferecer, é preciso criar uma rede – ou várias redes – de relacionamentos saudáveis, tanto na seara  estritamente familiar  quanto na de  trabalho e negócios , pois são nessas redes que nos apoiamos e buscamos solução para a cura de nossos problemas, conquista de nossas metas pessoais e profissionais, e o conforto em momentos de aflição e tristeza. Por isso, se você quiser melhorar como pessoa, não basta apenas adquirir  alto grau de conhe