Pular para o conteúdo principal

Descoberto ímã em escala atômica

Descoberto ímã em escala atômica
As camadas do material soltam-se facilmente com a ajuda de uma fita adesiva -
as esferas laranja representam os átomos de telúrio,
 amarelas são germânio e azuis são cromo. [Imagem: Zhenglu Li/Berkeley Lab]
Ferromagnetismo bidimensional
Cientistas dos Laboratórios Berkeley, nos EUA, descobriram uma propriedade magnética inesperada em um material bidimensional.
Esse novo ímã plano e atomicamente fino deverá ter grandes implicações para uma ampla gama de aplicações, como memórias em nanoescala, sensores magnéticos e dispositivos spintrônicos, já que o material é também um semicondutor.
"Esta é uma descoberta incrível, [que] abre as portas para explorarmos a física do spin e aplicações spintrônicas em poucas dimensões," disse o professor Xiang Zhang, cuja equipe recentemente fez demonstrações práticas da eletrônica em escala atômica.
Magnetismo em escala atômica
O material é um cristal de van der Waals 2-D, parte de uma classe de materiais cujas camadas atômicas são tão "soltas" que podem ser descascadas uma por uma com fita adesiva.
O que ninguém esperava é que essas camadas individuais possuíssem um ferromagnetismo intrínseco.
Na verdade, a descoberta esclarece uma questão de longa data na física quântica - sobre se o magnetismo sobrevive quando os materiais são miniaturizados até se tornarem bidimensionais. Há meio século, a resposta mais aceita pelos cientistas se baseia no teorema de Mermin-Wagner, que afirma que, como os materiais 2-D carecem de anisotropia magnética - um alinhamento direcional dos spins dos elétrons no material - eles não poderão ter ordem magnética.
"Curiosamente, descobrimos que a anisotropia magnética é uma propriedade inerente do material 2-D que estudamos, e devido a essa característica nós conseguimos detectar o ferromagnetismo intrínseco," disse Cheng Gong, principal autor da descoberta.
Cristais de Van der Waals
As forças de Van der Waals são forças intermoleculares de atração que não emergem das ligações covalentes ou iônicas típicas que mantêm as moléculas coesas - são elas que permitem que as lagartixas andem pelas paredes, por exemplo.
Por decorrência, cristais de Van der Waals são materiais em que as camadas atômicas não estão ligadas umas às outras através de ligações químicas tradicionais, o que permite que elas sejam facilmente esfoliadas com uma fita adesiva - foi assim que nasceu o grafeno, o mais conhecido cristal de Van der Waals, que valeu o Prêmio Nobel de Física em 2010.
Cheng Gong estima que, para este estudo, ele descascou mais de 3.000 flocos de telureto de cromo-germânio (CGT, ou Cr2Ge2Te6). Embora o CGT seja conhecido há décadas, os pesquisadores afirmam que seus flocos em 2D poderão representar uma nova família de cristais de van der Waals com largas aplicações tecnológicas.


Postado por Hadson Bastos

Comentários

Postagens mais visitadas deste blog

Fármaco brasileiro aprovado nos Estados Unidos

  Em fotomicrografia, um macho de Schistosoma mansoni, causador da esquistossomose CDC/G. Healy A agência que regula a produção de alimentos e medicamentos dos Estados Unidos, a FDA, concedeu o status de orphan drug para o fármaco imunomodulador P-Mapa, desenvolvido pela rede de pesquisa Farmabrasilis, para uso no tratamento de esquistossomose.  A concessão desse status é uma forma de o governo norte-americano incentivar o desenvolvimento de medicamentos para doenças com mercado restrito, com uma prevalência de até 200 mil pessoas nos Estados Unidos, embora em outros países possa ser maior. Globalmente, a esquistossomose é uma das principais doenças negligenciadas, que atinge cerca de 200 milhões de pessoas no mundo e cerca de 7 milhões no Brasil.  Entre outros benefícios, o status de orphan drug confere facilidades para a realização de ensaios clínicos, após os quais, se bem-sucedidos, o fármaco poderá ser registrado e distribuído nos Estados Unidos, no Brasil e em outro...

Nova forma de carbono é dura como pedra e elástica como borracha

Visualização do carbono vítreo ultraforte, duro e elástico. A estrutura ilustrada está sobreposta em uma imagem do material feita por microscópio eletrônico. [Imagem: Timothy Strobel] Muitos carbonos O carbono é um elemento químico cujas possibilidades de rearranjo parecem ser infinitas. Por exemplo, os diamantes transparentes e superduros, o grafite opaco e desmanchadiço, o espetacular grafeno , todos são compostos exclusivamente por carbono. E, claro, temos nós, os seres humanos, formados em uma estrutura de carbono. E tem também o diamano , o aerografite e, agora, uma nova forma que parece ser um misto de tudo isso. Meng Hu e seus colegas das universidades Yanshan (China) e Carnegie Mellon (EUA) criaram uma forma de carbono que é, ao mesmo tempo, dura como pedra e elástica como uma borracha - e ainda conduz eletricidade. Essas infinitas possibilidades do carbono parecem ser possíveis porque a configuração dos seus elétrons permite inúmeras combinações de autoligação, dando or...

Receita de grafeno para micro-ondas: Cozinhe por 1 segundo

Óxido de grafeno Um dos grandes entraves ao uso prático do grafeno é a dificuldade de produzi-lo: não é fácil fazer uma camada de apenas um átomo de espessura e mantê-la pura e firme para que suas incríveis propriedades sejam exploradas em sua totalidade. Quando ganharam o  Nobel por seus trabalhos com o grafeno , Andre Geim e Konstantin Novoselov contaram que isolaram o material usando uma fita adesiva para retirar pequenas camadas de um bloco de grafite. O problema é que não dá para fazer desse jeito em escala industrial, ou mesmo retirar o grafeno intacto da fita adesiva para conectá-lo a eletrodos, por exemplo. Atualmente, o modo mais fácil de fazer grandes quantidades de grafeno é esfoliar o grafite - o mesmo material dos lápis - em folhas de grafeno individuais usando produtos químicos. A desvantagem é que ocorrem reações secundárias com o oxigênio, formando óxido de grafeno, que é eletricamente não-condutor e estruturalmente mais fraco. A remoção do oxigênio do ...