Pular para o conteúdo principal

How photosynthetic cells deal with a lack of iron

University of Freiburg researchers discover a small
RNA molecule in cyanobacteria that affects
metabolic acclimation. 
Credit: Sandra Meyndt

International researchers working in collaboration with Professor Wolfgang R. Hess and Dr. Jens Georg, both from the University of Freiburg's Faculty of Biology, have discovered a small RNA molecule that plays a key role in how cyanobacteria adjust their metabolism to the amount of iron available in the environment. Oxygenic photosynthesis -- in which plants, algae and cyanobacteria generate oxygen and harvest solar energy for the synthesis of organic matter -- is a process that depends on iron. When only low amounts of iron are available, cyanobacteria are able to reduce their photosynthetic activity by using what the researchers are calling IsaR1, which stands for "iron stress activated RNA 1." The team of researchers have published their findings in the latest issue of Current Biology.

As a result of their dependence on iron, oxygen-producing photosynthetic cells face a twofold dilemma. On the one hand, ferric iron (Fe3+) and oxygen tend to react with each other and form a type of rust that is typically insoluble in an oxygen-rich environment, meaning that the resulting iron compound cannot be used for metabolism. On the other hand, ferrous iron (Fe2+) can lead to the creation of dangerous free radicals by reacting with molecules that are present in every living cell. Iron is therefore an essential but potentially dangerous element, and cells must constantly regulate its status and concentration.

Scientists have known for a long time that many bacteria keep their iron levels stable with the help of a transcription factor called Fur, which stands for "ferric uptake regulator." When sufficient amounts of iron are present, Fur binds it. This enables Fur to act as a repressor, meaning it is inhibitory for the expression of certain genes. If iron starvation occurs, then Fur loses the bound iron atom, enabling the bacteria to produce certain proteins that, for example, ensure the uptake of iron.

When not enough iron is available, the bacteria also have to inhibit the expression of other genes, so that they can stop the production of proteins that are particularly iron-rich and are not absolutely necessary for survival in unfavorable conditions. This is especially true regarding the apparatus for oxygenic photosynthesis, which is the most iron-rich supramolecular structure in the cell. The transcription of the information contained in the DNA involves regulatory RNAs. One of these RNA molecules is IsaR1. When iron is low, IsaR1 affects the photosynthetic apparatus of cyanobacteria in three different ways. First, IsaR1 inhibits the expression of multiple proteins that are important for photosynthesis. Second, IsaR1 interferes with the biochemical pathway leading to the production of the green photosynthetic pigment chlorophyll, which is needed in smaller quantities when iron is scarce. Third, IsaR1 works against the expression of proteins for iron-sulfur clusters, which are also important in photosynthesis.

What is also remarkable is that IsaR1 consists of only 68 nucleotides, as compared to the genes of regulatory proteins, which often need thousands of these building blocks. "Discovering that such a short RNA molecule controls such a major acclimation response in metabolism and thus affects the photosynthetic machinery on three different levels was a great surprise," said Wolfgang Hess. The team's findings not only provide insight into a previously unknown acclimation strategy of photosynthetic cyanobacteria; they also enable researchers to draw key conclusions about the regulation of photosynthetic processes in all "green" organisms, including plants and algae.

Background: Cyanobacteria


Microfossils called stromatolites found in Australia have shown that photosynthesizing cyanobacteria are some of the oldest forms of life on Earth. Similar cells even existed already more than three billion years ago. Their photosynthetic activity released oxygen into the atmosphere, where it accumulated over the millennia and ultimately enabled the evolution of animals and humans. Cyanobacteria, especially those in the ocean, continue to play an important role in environmental cycles today.


Source: https://www.sciencedaily.com/releases/2017/05/170505103634.htm
Posted by David Araripe

Comentários

Postagens mais visitadas deste blog

Fármaco brasileiro aprovado nos Estados Unidos

  Em fotomicrografia, um macho de Schistosoma mansoni, causador da esquistossomose CDC/G. Healy A agência que regula a produção de alimentos e medicamentos dos Estados Unidos, a FDA, concedeu o status de orphan drug para o fármaco imunomodulador P-Mapa, desenvolvido pela rede de pesquisa Farmabrasilis, para uso no tratamento de esquistossomose.  A concessão desse status é uma forma de o governo norte-americano incentivar o desenvolvimento de medicamentos para doenças com mercado restrito, com uma prevalência de até 200 mil pessoas nos Estados Unidos, embora em outros países possa ser maior. Globalmente, a esquistossomose é uma das principais doenças negligenciadas, que atinge cerca de 200 milhões de pessoas no mundo e cerca de 7 milhões no Brasil.  Entre outros benefícios, o status de orphan drug confere facilidades para a realização de ensaios clínicos, após os quais, se bem-sucedidos, o fármaco poderá ser registrado e distribuído nos Estados Unidos, no Brasil e em outro...

CONSERVAÇÃO DE ALIMENTOS E A EQUAÇÃO DE ARRHENIUS por Carlos Bravo Diaz, Universidade de Vigo, Espanha

Traduzido por Natanael F. França Rocha, Florianópolis, Brasil  A conservação de alimentos sempre foi uma das principais preocupações do ser humano. Conhecemos, já há bastante tempo, formas de armazenar cereais e também a utilização de azeite para evitar o contato do alimento com o oxigênio do ar e minimizar sua oxidação. Neste blog, podemos encontrar diversos ensaios sobre os métodos tradicionais de conservação de alimentos. Com o passar do tempo, os alimentos sofrem alterações que resultam em variações em diferentes parâmetros que vão definir sua "qualidade". Por exemplo, podem sofrer reações químicas (oxidação lipídica, Maillard, etc.) e bioquímicas (escurecimento enzimático, lipólise, etc.), microbianas (que podem ser úteis, por exemplo a fermentação, ou indesejáveis caso haja crescimento de agentes patogênicos) e por alterações físicas (coalescência, agregação, etc.). Vamos observar agora a tabela abaixo sobre a conservação de alimentos. Por que usamo...

Ferramenta na internet corrige distorções do mapa-múndi

Tamanho do Brasil em relação aos países europeus (Google/Reprodução) Com ajuda da tecnologia digital, é possível comparar no mapa o real tamanho de nações e continentes Os países do mundo não são do tamanho que você imagina. Isso porque é quase inviável imprimir nos mapas, planos, em 2D, as reais proporções das nações e dos continentes. Mas agora, com a ajuda da tecnologia moderna, as distorções do mapa-múndi podem ser solucionadas. É exatamente o que faz o site The True Size Of (em inglês, ‘o verdadeiro tamanho de’). Ao entrar na plataforma é possível verificar o real tamanho de um país, comparando-o com qualquer outro do planeta. Por exemplo, o Brasil sozinho é maior que mais de vinte países da Europa juntos (confira na imagem acima). Por que é distorcido? O primeiro mapa-múndi retratado como conhecemos é do alemão Martin Waldseemüller, feito em 1507, 15 anos depois dos europeus chegarem à América com Cristóvão Colombo em 1492. Na projeção, observa-se uma África muito maior...