Pular para o conteúdo principal

Nasce a Holografia Quântica


O que sabemos das leis naturais

Você se envolveria em uma pesquisa que pretendesse fazer algo que os livros-texto dizem contrariar as leis fundamentais da física?
Talvez sim, pelo menos se você fosse um dos cientistas que desbravam a natureza e ajudam a escrever as teorias que nós costumamos chamar de leis - mas que parecem nunca estar perfeitamente escritas.
Nasce a Holografia Quântica
Esquema do experimento que gerou o primeiro holograma de um único fóton - um holograma quântico.                                                                                  
Por exemplo, até agora os físicos acreditavam que criar um holograma de um único fóton era impossível devido às leis fundamentais da física porque fótons individuais obedecem às leis da mecânica quântica, enquanto os hologramas dependem de interferências de feixes de luz - formados por zilhões de fótons -, que seguem as leis da óptica clássica.

Mas agora você pode apagar todas essas "crenças", porque uma equipe de físicos da Universidade de Varsóvia, na Polônia, acaba de superar todos os desafios e aplicar os conceitos da holografia clássica para o mundo dos fenômenos quânticos - eles criaram o primeiro holograma quântico.

Como seria de se esperar, o impacto dessa realização está ribombando por todos os fundamentos da mecânica quântica, e certamente ajudará a reescrever muitos livros-texto de física.

Holografia clássica e holografia quântica


Nasce a Holografia Quântica
Michal Jachura e Radoslaw Chrapkiewicz, principais idealizadores do experimento que levou ao nascimento da holografia quântica.

"Nós realizamos um experimento relativamente simples para medir e visualizar algo incrivelmente difícil de observar: o formato da frente de onda de um único fóton," resume o professor Radoslaw Chrapkiewicz.
Simples, mas espetacular.

Para começar, na fotografia os pontos individuais de uma imagem registram apenas a intensidade da luz. Já na holografia clássica o fenômeno de interferência registra também a fase das ondas de luz, que transporta informação sobre a profundidade da imagem.
Para criar um holograma, uma onda de luz de referência é sobreposta a uma outra onda do mesmo comprimento de onda, mas refletida de um objeto tridimensional - para essa superposição, os picos e vales das duas ondas são deslocados em diferentes graus para diferentes pontos da imagem.

Isto resulta em uma interferência, criando um complexo padrão de linhas devido às diferenças de fase entre as duas ondas. Basta então usar um feixe de luz de referência para iluminar o holograma e recriar a estrutura espacial das frentes das ondas da luz refletida, recriando assim a forma 3D do objeto.

O problema de ir reduzindo os feixes de luz até o mínimo possível, até um fóton apenas - para criar um holograma de um fóton individual - é que a fase dos fótons individuais continua a flutuar, o que torna a interferência clássica com outros fótons algo impossível.

Como fazer o impossível

Como a equipe polonesa decidiu enfrentar uma tarefa aparentemente impossível, eles abordaram a questão de forma diferente: em vez de usar a interferência clássica das ondas eletromagnéticas, eles tentaram registrar a interferência quântica quando as funções de onda dos fótons individuais interagem.
Nasce a Holografia Quântica
Holograma de um único fóton: reconstruído a partir de medições experimentais (à esquerda) e previsto teoricamente (à direita).

Até agora, não havia um método experimental simples para obter informações sobre a fase da função de onda de um fóton individual. Embora a mecânica quântica tenha muitas aplicações, e venha sendo checada inúmeras vezes com um grande grau de precisão crescente, ainda não somos capazes de explicar o que de fato são as funções de onda: serão elas simplesmente uma ferramenta matemática útil, ou são algo real?
Assim, o experimento "simples" da equipe é um importante passo para melhorar nossa compreensão dos princípios fundamentais da mecânica quântica.
"Nosso experimento é um dos primeiros a permitir observar diretamente um dos parâmetros fundamentais da função de onda do fóton - a sua fase - nos levando um passo mais perto de compreender o que a função de onda realmente é," disse Michal Jachura, principal idealizador do holograma quântico.

Primeiro holograma quântico

O experimento começou com um par de fótons, com frentes de onda planas e polarizações perpendiculares. A polarização diferente tornou possível separar os fótons em um cristal e tornar um deles "desconhecido" curvando sua frente de onda com uma lente cilíndrica.

Os fótons foram então refletidos por espelhos e direcionados para um divisor de feixe, um cristal de calcita, que não altera o sentido dos fótons polarizados verticalmente, mas desloca os fótons polarizados horizontalmente - a fim de fazer com que cada direção fosse igualmente provável, e para certificar-se de que o cristal funcionava mesmo como um divisor de feixe, os planos de polarização dos fótons foram inclinados em 45 graus antes de entrarem no divisor.

Repetindo as medições várias vezes, os físicos obtiveram uma imagem de interferência correspondente ao holograma do fóton desconhecido visto a partir de um único ponto no espaço - surgia diante de seus olhos, ou de seus instrumentos, o primeiro holograma de um único fóton, um holograma quântico.

Aplicações surpreendentes

Agora que conseguiu reconstruir a função de onda de um fóton individual, a equipe pretende projetar outros experimentos para recriar funções de onda de objetos quânticos mais complexos, tais como átomos.

Mas será que a holografia quântica irá encontrar aplicações além do laboratório, de forma semelhante à holografia clássica, que é rotineiramente utilizada em segurança (hologramas são difíceis de falsificar), entretenimento, transportes (em escâneres de medição das dimensões de cargas), imagens de microscopia, armazenamento de dados ópticos e tecnologias de processamento?

"É difícil responder a esta pergunta hoje. Todos nós - eu me refiro aos físicos - devemos primeiro botar nossas cabeças para funcionar para entender esta nova ferramenta. É provável que aplicações reais da holografia quântica não apareçam por algumas décadas ainda, mas se há uma coisa que podemos ter certeza é que elas serão surpreendentes," disse o professor Konrad Banaszek.

Fonte: http://www.inovacaotecnologica.com.br/noticias/noticia.php?artigo=holografia-quantica&id=010150160722#.V5ICqI67P64

Postado por Hadson Bastos



Comentários

Postagens mais visitadas deste blog

Fármaco brasileiro aprovado nos Estados Unidos

  Em fotomicrografia, um macho de Schistosoma mansoni, causador da esquistossomose CDC/G. Healy A agência que regula a produção de alimentos e medicamentos dos Estados Unidos, a FDA, concedeu o status de orphan drug para o fármaco imunomodulador P-Mapa, desenvolvido pela rede de pesquisa Farmabrasilis, para uso no tratamento de esquistossomose.  A concessão desse status é uma forma de o governo norte-americano incentivar o desenvolvimento de medicamentos para doenças com mercado restrito, com uma prevalência de até 200 mil pessoas nos Estados Unidos, embora em outros países possa ser maior. Globalmente, a esquistossomose é uma das principais doenças negligenciadas, que atinge cerca de 200 milhões de pessoas no mundo e cerca de 7 milhões no Brasil.  Entre outros benefícios, o status de orphan drug confere facilidades para a realização de ensaios clínicos, após os quais, se bem-sucedidos, o fármaco poderá ser registrado e distribuído nos Estados Unidos, no Brasil e em outro...

CONSERVAÇÃO DE ALIMENTOS E A EQUAÇÃO DE ARRHENIUS por Carlos Bravo Diaz, Universidade de Vigo, Espanha

Traduzido por Natanael F. França Rocha, Florianópolis, Brasil  A conservação de alimentos sempre foi uma das principais preocupações do ser humano. Conhecemos, já há bastante tempo, formas de armazenar cereais e também a utilização de azeite para evitar o contato do alimento com o oxigênio do ar e minimizar sua oxidação. Neste blog, podemos encontrar diversos ensaios sobre os métodos tradicionais de conservação de alimentos. Com o passar do tempo, os alimentos sofrem alterações que resultam em variações em diferentes parâmetros que vão definir sua "qualidade". Por exemplo, podem sofrer reações químicas (oxidação lipídica, Maillard, etc.) e bioquímicas (escurecimento enzimático, lipólise, etc.), microbianas (que podem ser úteis, por exemplo a fermentação, ou indesejáveis caso haja crescimento de agentes patogênicos) e por alterações físicas (coalescência, agregação, etc.). Vamos observar agora a tabela abaixo sobre a conservação de alimentos. Por que usamo...

Ferramenta na internet corrige distorções do mapa-múndi

Tamanho do Brasil em relação aos países europeus (Google/Reprodução) Com ajuda da tecnologia digital, é possível comparar no mapa o real tamanho de nações e continentes Os países do mundo não são do tamanho que você imagina. Isso porque é quase inviável imprimir nos mapas, planos, em 2D, as reais proporções das nações e dos continentes. Mas agora, com a ajuda da tecnologia moderna, as distorções do mapa-múndi podem ser solucionadas. É exatamente o que faz o site The True Size Of (em inglês, ‘o verdadeiro tamanho de’). Ao entrar na plataforma é possível verificar o real tamanho de um país, comparando-o com qualquer outro do planeta. Por exemplo, o Brasil sozinho é maior que mais de vinte países da Europa juntos (confira na imagem acima). Por que é distorcido? O primeiro mapa-múndi retratado como conhecemos é do alemão Martin Waldseemüller, feito em 1507, 15 anos depois dos europeus chegarem à América com Cristóvão Colombo em 1492. Na projeção, observa-se uma África muito maior...