Pular para o conteúdo principal

Como transformar a nanotecnologia em "big" tecnologia

Como transformar a nanotecnologia em
O objeto em escala macro tem uma estrutura fractal, com detalhes que exigem um microscópio para serem vistas.

Nanoimpressão 3D

Um dos grandes sonhos da nanotecnologia é construir as coisas "de baixo para cima", montando os objetos molécula por molécula, o que, em tese, permitiria fabricar qualquer tipo de material com as propriedades desejadas.

Xiaoyu Zheng, da Universidade da Virgínia, nos EUA, lembrou-se dessa ideia, deu uma olhada nas impressoras 3D e se perguntou: Por que não criar uma impressora 3D que seja precisa o suficiente para depositar não gotas, uma de cada vez, mas moléculas?

Ele ainda não chegou lá, mas já foi capaz de criar um processo que permite fabricar materiais metálicos nanoestruturados em grande escala, atingindo dimensões impensáveis para as técnicas da nanotecnologia e detalhes inatingíveis com as técnicas industriais.

Bioinspiração
Os materiais naturais - dos ossos humanos aos pés das lagartixas - são formados por estruturas que se organizam a partir da escala nanométrica, até formar objetos em macroescala.

Os materiais artificiais também são muito promissores: uma folha de grafeno, por exemplo, pode ser 100 vezes mais forte do que o aço. Mas simplesmente juntar essas folhas resulta em um material que é muito mais fraco do que as folhas individuais - e bem mais fraco do que o aço.

A nova técnica começa a resolver esse problema.
O processo atinge um controle sobre as dimensões do objeto que é nada menos do que 7 ordens de magnitude maior do que o obtido com as impressoras 3D convencionais.


Arquiteturas hierárquicas

Tudo começa com nanotubos ocos, que são organizados para formar estruturas hierárquicas tridimensionais, resultando em materiais que apresentam uma elasticidade à tensão 400% superior à que se consegue obter com as espumas metálicas ou cerâmicas.

A técnica, que gera redes hierárquicas 3-D de vários níveis, com características em nanoescala, poderá ser útil em qualquer aplicação que exija uma combinação de rigidez, força, baixo peso e alta flexibilidade - como estruturas aeroespaciais, armaduras flexíveis, veículos mais leves e baterias.

"Criar arquiteturas hierárquicas 3D com microdetalhes ao longo de sete ordens de magnitude na largura de banda estrutural não tem precedentes," disse o professor Zheng.
Além das aplicações estruturais, a nova técnica permitirá criar materiais inorgânicos multifuncionais, como ligas metálicas e cerâmicas com propriedades fotônicas. Suas grandes áreas superficiais poderão coletar a luz de todas as direções, o que poderá ser útil em painéis solares 3D, por exemplo.
Fonte: http://www.inovacaotecnologica.com.br/noticias/noticia.php?artigo=como-transformar-nanotecnologia-big-tecnologia&id=010165160720

Postado por Hadson Bastos


Comentários

Postagens mais visitadas deste blog

Fármaco brasileiro aprovado nos Estados Unidos

  Em fotomicrografia, um macho de Schistosoma mansoni, causador da esquistossomose CDC/G. Healy A agência que regula a produção de alimentos e medicamentos dos Estados Unidos, a FDA, concedeu o status de orphan drug para o fármaco imunomodulador P-Mapa, desenvolvido pela rede de pesquisa Farmabrasilis, para uso no tratamento de esquistossomose.  A concessão desse status é uma forma de o governo norte-americano incentivar o desenvolvimento de medicamentos para doenças com mercado restrito, com uma prevalência de até 200 mil pessoas nos Estados Unidos, embora em outros países possa ser maior. Globalmente, a esquistossomose é uma das principais doenças negligenciadas, que atinge cerca de 200 milhões de pessoas no mundo e cerca de 7 milhões no Brasil.  Entre outros benefícios, o status de orphan drug confere facilidades para a realização de ensaios clínicos, após os quais, se bem-sucedidos, o fármaco poderá ser registrado e distribuído nos Estados Unidos, no Brasil e em outro...

Nova forma de carbono é dura como pedra e elástica como borracha

Visualização do carbono vítreo ultraforte, duro e elástico. A estrutura ilustrada está sobreposta em uma imagem do material feita por microscópio eletrônico. [Imagem: Timothy Strobel] Muitos carbonos O carbono é um elemento químico cujas possibilidades de rearranjo parecem ser infinitas. Por exemplo, os diamantes transparentes e superduros, o grafite opaco e desmanchadiço, o espetacular grafeno , todos são compostos exclusivamente por carbono. E, claro, temos nós, os seres humanos, formados em uma estrutura de carbono. E tem também o diamano , o aerografite e, agora, uma nova forma que parece ser um misto de tudo isso. Meng Hu e seus colegas das universidades Yanshan (China) e Carnegie Mellon (EUA) criaram uma forma de carbono que é, ao mesmo tempo, dura como pedra e elástica como uma borracha - e ainda conduz eletricidade. Essas infinitas possibilidades do carbono parecem ser possíveis porque a configuração dos seus elétrons permite inúmeras combinações de autoligação, dando or...

Receita de grafeno para micro-ondas: Cozinhe por 1 segundo

Óxido de grafeno Um dos grandes entraves ao uso prático do grafeno é a dificuldade de produzi-lo: não é fácil fazer uma camada de apenas um átomo de espessura e mantê-la pura e firme para que suas incríveis propriedades sejam exploradas em sua totalidade. Quando ganharam o  Nobel por seus trabalhos com o grafeno , Andre Geim e Konstantin Novoselov contaram que isolaram o material usando uma fita adesiva para retirar pequenas camadas de um bloco de grafite. O problema é que não dá para fazer desse jeito em escala industrial, ou mesmo retirar o grafeno intacto da fita adesiva para conectá-lo a eletrodos, por exemplo. Atualmente, o modo mais fácil de fazer grandes quantidades de grafeno é esfoliar o grafite - o mesmo material dos lápis - em folhas de grafeno individuais usando produtos químicos. A desvantagem é que ocorrem reações secundárias com o oxigênio, formando óxido de grafeno, que é eletricamente não-condutor e estruturalmente mais fraco. A remoção do oxigênio do ...