Pular para o conteúdo principal

Reação controlada por luz transforma CO2 em combustível

O efeito da luz sobre as partículas em nanoescala é
dirigido por quasipartículas conhecidas como
plásmons de superfície. [Imagem: Chad Scales]
Nanocatalisador
Um catalisador sintetizado na forma de minúsculas nanopartículas converte dióxido de carbono (CO2) em metano usando apenas luz ultravioleta como fonte de energia.
Os químicos têm procurado há muito tempo um fotocatalisador eficiente para acelerar essa reação porque isso pode ajudar a reduzir os níveis crescentes de dióxido de carbono em nossa atmosfera, convertendo-o em metano que, apesar de ser um gás de efeito estufa ainda mais poderoso, é também um componente-chave para muitos tipos de combustíveis, ou pode ele próprio ser usado diretamente como combustível.
Outra grande vantagem do processo é que praticamente não são gerados produtos secundários indesejáveis na reação, como o monóxido de carbono. Essa forte seletividade da catálise induzida pela luz também pode se estender a outras reações químicas importantes, dizem os pesquisadores.
CO2 + luz = metano
Xiao Zhang e seus colegas da Universidade Duke, nos EUA, sintetizaram nanocubos de ródio que atingiram o tamanho ideal para absorver a luz na faixa do ultravioleta próximo. Esse efeito da luz sobre partículas em nanoescala é dirigido por quasipartículas conhecidas como plásmons de superfície, as mesmas que deram origem à plasmônica em sistemas de comunicação e computação.
Pequenas quantidades de nanopartículas foram colocadas em uma câmara de reação, na qual foram injetadas misturas de dióxido de carbono e hidrogênio.
Quando Zhang aqueceu as nanopartículas a 300º C, a reação gerou uma mistura igual de metano e monóxido de carbono, um gás venenoso. Mas quando ele desligou o calor e iluminou a câmara com uma lâmpada LED ultravioleta de alta potência, o dióxido de carbono e o hidrogênio reagiram a temperatura ambiente e, melhor de tudo, a reação produziu quase exclusivamente metano.
"Nós descobrimos que, quando iluminamos as nanoestruturas de ródio, podemos forçar a reação química para ir em uma direção mais do que na outra. Assim, nós começamos a escolher como a reação é conduzida usando a luz de uma maneira que nós não conseguimos fazer usando o calor," explicou o professor Henry Everitt.
Essa seletividade - a capacidade de controlar a reação química de modo que ela gere o produto desejado com poucos ou nenhum produto secundário - é um fator importante na determinação do custo e da viabilidade de reações em escala industrial, detalhou Zhang.
Esquema da reação que produz metano a partir do CO2 por meio de um fotocatalisador. [Imagem: Xiao Zhang et al. - 10.1038/NCOMMS14542]
Ródio
Agora, a equipe planeja testar se sua técnica de luz pode controlar outras reações que são atualmente catalisadas com ródio. Ajustando o tamanho das nanopartículas, eles também esperam desenvolver uma versão do catalisador que seja alimentado pela luz solar, criando uma reação de energia solar que poderia ser integrada em sistemas de energia renovável.
Talvez também seja possível trabalhar com nanopartículas de outros metais, uma vez que o ródio é um dos elementos mais raros na Terra - e, portanto, é muito caro. Apesar disso, o ródio desempenha um papel surpreendentemente importante na economia. Pequenas quantidades do metal cinza-prateado são usadas para catalisar uma série de processos industriais essenciais, incluindo a produção de medicamentos, detergentes e fertilizantes nitrogenados.
Fonte: http://www.inovacaotecnologica.com.br/noticias/noticia.php?artigo=reacao-controlada-luz-transforma-co2-combustivel&id=010125170307#.WMGI_m_yvIV
Postado por David Araripe

Comentários

Postagens mais visitadas deste blog

CONSERVAÇÃO DE ALIMENTOS E A EQUAÇÃO DE ARRHENIUS por Carlos Bravo Diaz, Universidade de Vigo, Espanha

Traduzido por Natanael F. França Rocha, Florianópolis, Brasil  A conservação de alimentos sempre foi uma das principais preocupações do ser humano. Conhecemos, já há bastante tempo, formas de armazenar cereais e também a utilização de azeite para evitar o contato do alimento com o oxigênio do ar e minimizar sua oxidação. Neste blog, podemos encontrar diversos ensaios sobre os métodos tradicionais de conservação de alimentos. Com o passar do tempo, os alimentos sofrem alterações que resultam em variações em diferentes parâmetros que vão definir sua "qualidade". Por exemplo, podem sofrer reações químicas (oxidação lipídica, Maillard, etc.) e bioquímicas (escurecimento enzimático, lipólise, etc.), microbianas (que podem ser úteis, por exemplo a fermentação, ou indesejáveis caso haja crescimento de agentes patogênicos) e por alterações físicas (coalescência, agregação, etc.). Vamos observar agora a tabela abaixo sobre a conservação de alimentos. Por que usamo

Two new proteins connected to plant development discovered by scientists

The discovery in the model plant Arabidopsis of two new proteins, RICE1 and RICE2, could lead to better ways to regulate plant structure and the ability to resist crop stresses such as drought, and ultimately to improve agricultural productivity, according to researchers at Texas A&M AgriLife Research. Credit: Graphic courtesy of Dr. Xiuren Zhang, Texas A&M AgriLife Research The discovery of two new proteins could lead to better ways to regulate plant structure and the ability to resist crop stresses such as drought, thus improving agriculture productivity, according to researchers at Texas A&M AgriLife Research. The two proteins, named RICE1 and RICE2, are described in the May issue of the journal eLife, based on the work of Dr. Xiuren Zhang, AgriLife Research biochemist in College Station. Zhang explained that DNA contains all the information needed to build a body, and molecules of RNA take that how-to information to the sites in the cell where they can be used

NIH completes atlas of human DNA differences that influence gene expression

Sections of the genome, known as expression Quantitative Trait Loci (eQTL) work to control how genes are turned off and on. Bethesda, Md. , Wed., Oct.11, 2017 - Researchers funded by the National Institutes of Health (NIH) have completed a detailed atlas documenting the stretches of human DNA that influence gene expression - a key way in which a person's genome gives rise to an observable trait, like hair color or disease risk. This atlas is a critical resource for the scientific community interested in how individual genomic variation leads to biological differences, like healthy and diseased states, across human tissues and cell types. The atlas is the culmination of work from the Genotype-Tissue Expression (GTEx) Consortium, established to catalog how genomic variation influences how genes are turned off and on. "GTEx was unique because its researchers explored how genomic variation affects the expression of genes in individual tissues, across many individuals, and