Pular para o conteúdo principal

Microscópio da nanotecnologia agora cabe dentro de um chip

O microscópio de força atômica em um chip mede cerca de 1 centímetro quadrado, com o MEMS conectado a uma placa de circuito do tamanho de um cartão de crédito. [Imagem: University of Texas at Dallas]
Microscópio e preço miniaturizados
Um microscópio de força atômica, um dos instrumentos que viabilizaram a nanotecnologia e que hoje custa meio milhão de dólares, agora cabe dentro de um chip.
A miniaturização foi possível com o uso de um MEMS (Microelectromechanical System), um sistema microeletromecânico.
"Uma versão educacional [de um microscópio de força atômica] custa entre US$30 mil e US$40 mil, e um de nível laboratorial pode passar dos US$500 mil. Nossa abordagem MEMS para o microscópio de força atômica tem o potencial para reduzir significativamente a complexidade e o custo do instrumento," disse o professor Reza Moheimani, da Universidade do Texas em Dallas.
"Um dos aspectos atrativos sobre os MEMS é que você pode produzi-los em massa, fabricando centenas ou milhares deles de uma vez, então o preço de cada chip seria apenas alguns dólares. Como resultado, você pode ser capaz de oferecer todo o sistema do microscópio de força atômica em miniatura por alguns milhares de dólares," acrescentou.
Microscópio de força atômica
A ponta de um microscópio AFM é tão fina que pode ter um único átomo na extremidade (direita). Embaixo, imagens geradas pelo aparelho. [Imagem: Rubén Pérez]
Um microscópio de força atômica (AFM na sigla em inglês) é uma ferramenta científica usada para gerar imagens tridimensionais detalhadas das superfícies dos materiais, até a escala nanométrica - que está aproximadamente na escala das moléculas individuais.
O projeto básico de um AFM consiste em um minúsculo braço, fixo de um lado e com uma ponta afiada na extremidade. À medida que o aparelho é movido para frente e para trás ao longo da superfície da amostra - ou a amostra se move sob ela - as forças de interação entre a ponta do microscópio e a amostra fazem com que a ponta se mova para cima e para baixo. Esses movimentos são então traduzidos em uma imagem topográfica.
"Um AFM é um microscópio que 'vê' uma superfície de forma parecida com que uma pessoa com deficiência visual faz, tocando. Você pode obter uma resolução que vai muito além do que um microscópio óptico pode alcançar," disse Moheimani.
AFM em um chip
O AFM em um chip mede cerca de 1 centímetro quadrado, com o MEMS conectado a uma placa de circuito do tamanho de um cartão de crédito. Esta placa contém todos os circuitos, sensores e outros componentes necessários para controlar o movimento do aparelho.
O protótipo ainda não rivaliza com a qualidade das imagens dos aparelhos comerciais, mas a equipe afirma que se trata de um aparelho de primeira geração, no qual eles continuam trabalhando com vistas a chegar a uma versão comercializável.
Fonte: http://www.inovacaotecnologica.com.br/noticias/noticia.php?artigo=microscopio-nanotecnologia-dentro-chip&id=010165170302#.WMGJAm_yvIV
Postado por David Araripe

Comentários

Postagens mais visitadas deste blog

Fármaco brasileiro aprovado nos Estados Unidos

  Em fotomicrografia, um macho de Schistosoma mansoni, causador da esquistossomose CDC/G. Healy A agência que regula a produção de alimentos e medicamentos dos Estados Unidos, a FDA, concedeu o status de orphan drug para o fármaco imunomodulador P-Mapa, desenvolvido pela rede de pesquisa Farmabrasilis, para uso no tratamento de esquistossomose.  A concessão desse status é uma forma de o governo norte-americano incentivar o desenvolvimento de medicamentos para doenças com mercado restrito, com uma prevalência de até 200 mil pessoas nos Estados Unidos, embora em outros países possa ser maior. Globalmente, a esquistossomose é uma das principais doenças negligenciadas, que atinge cerca de 200 milhões de pessoas no mundo e cerca de 7 milhões no Brasil.  Entre outros benefícios, o status de orphan drug confere facilidades para a realização de ensaios clínicos, após os quais, se bem-sucedidos, o fármaco poderá ser registrado e distribuído nos Estados Unidos, no Brasil e em outro...

Nova forma de carbono é dura como pedra e elástica como borracha

Visualização do carbono vítreo ultraforte, duro e elástico. A estrutura ilustrada está sobreposta em uma imagem do material feita por microscópio eletrônico. [Imagem: Timothy Strobel] Muitos carbonos O carbono é um elemento químico cujas possibilidades de rearranjo parecem ser infinitas. Por exemplo, os diamantes transparentes e superduros, o grafite opaco e desmanchadiço, o espetacular grafeno , todos são compostos exclusivamente por carbono. E, claro, temos nós, os seres humanos, formados em uma estrutura de carbono. E tem também o diamano , o aerografite e, agora, uma nova forma que parece ser um misto de tudo isso. Meng Hu e seus colegas das universidades Yanshan (China) e Carnegie Mellon (EUA) criaram uma forma de carbono que é, ao mesmo tempo, dura como pedra e elástica como uma borracha - e ainda conduz eletricidade. Essas infinitas possibilidades do carbono parecem ser possíveis porque a configuração dos seus elétrons permite inúmeras combinações de autoligação, dando or...

Receita de grafeno para micro-ondas: Cozinhe por 1 segundo

Óxido de grafeno Um dos grandes entraves ao uso prático do grafeno é a dificuldade de produzi-lo: não é fácil fazer uma camada de apenas um átomo de espessura e mantê-la pura e firme para que suas incríveis propriedades sejam exploradas em sua totalidade. Quando ganharam o  Nobel por seus trabalhos com o grafeno , Andre Geim e Konstantin Novoselov contaram que isolaram o material usando uma fita adesiva para retirar pequenas camadas de um bloco de grafite. O problema é que não dá para fazer desse jeito em escala industrial, ou mesmo retirar o grafeno intacto da fita adesiva para conectá-lo a eletrodos, por exemplo. Atualmente, o modo mais fácil de fazer grandes quantidades de grafeno é esfoliar o grafite - o mesmo material dos lápis - em folhas de grafeno individuais usando produtos químicos. A desvantagem é que ocorrem reações secundárias com o oxigênio, formando óxido de grafeno, que é eletricamente não-condutor e estruturalmente mais fraco. A remoção do oxigênio do ...