Pular para o conteúdo principal

Scientists Develop Map That Reveals the Structure and Movements of GABA Receptor

Gamma aminobutyric acid (GABA) is a naturally occurring amino acid that works as a neurotransmitter in your brain. GABA is considered an inhibitory neurotransmitter because it inhibits certain brain signals and decreases activity in your central nervous system. When released, it binds to neurons at one of two receptors, GABAA and GABAB, and slows their firing rates. GABA is one place for researchers to start looking to understand neuropsychological ailments. Now scientists from the Department of Energy’s SLAC National Accelerator Laboratory, have developed a detailed map of one of GABA’s receptors and have discovered not only the structure, but new details of how it moves from its inactive state to active state.

Their study, “Structural basis of the activation of a metabotropic GABA receptor,” is published in Nature.

The scientists studied GABAB, using cryo-electron microscopy to take detailed pictures of the molecule. Cryo-electron microscopy use beams of electrons rather than light to form images of a sample, and then freezing the sample to preserve it under the harsh conditions in an electron microscope.

The activation transition for the GABAB receptor. GABAB comprises two distinct parts, GB1 and GB2. In the first step toward activation, researchers added an agonist, a GABA-like molecule that brings the pieces of GB1 and GB2 that sit outside the cell together. In the second step, the team added a molecule called a positive allosteric modulator, or PAM, which together with the agonist stabilized GABAB in its active form. Credit: Cornelius Gati/SLAC National Accelerator Laboratory.

“Here we present four cryo-electron microscopy structures of the human full-length GB1–GB2 heterodimer: one structure of its inactive apo state, two intermediate agonist-bound forms, and an active form in which the heterodimer is bound to an agonist and a positive allosteric modulator. The structures reveal substantial differences, which shed light on the complex motions that underlie the unique activation mechanism of GABAB,” wrote the scientists.

The scientists hoped to map the structure of GABAB in both inactive and active states. To their surprise, they found the existence and rough maps of two intermediate states. “We didn’t even know these existed,” stated Cornelius Gati, PhD, an author of the study and structural biologist at the Department of Energy’s SLAC National Accelerator Laboratory.

To observe the active state, the team added two molecules with GABAB and took additional cryo-EM images, which stabilized the GABAB receptor in its active state. “Our results show that agonist binding leads to the closure of the Venus flytrap domain of GB1, triggering a series of transitions, first rearranging and bringing the two transmembrane domains into close contact along transmembrane helix 6 and ultimately inducing conformational rearrangements in the GB2 transmembrane domain via a lever-like mechanism to initiate downstream signaling. This active state is stabilized by a positive allosteric modulator binding at the transmembrane dimerization interface,” the researchers noted.

Being able to see each of those steps along with new details, such as the site where the PAM binds to GABAB, could help researchers design better drugs to treat neuropsychological disease, explained Vadim Cherezov, PhD, a structural biologist at the University of Southern California and co-author of the study.

Their findings about the structure and its transitions between states could help scientists better understand GABA receptors and may eventually lead to better treatments for psychosis and other conditions.

SOURCE: Gene G News

Sent by Ivanice Bezerra, PhD

Posted by Cláudio H. Dahne

Comentários

Postagens mais visitadas deste blog

CONSERVAÇÃO DE ALIMENTOS E A EQUAÇÃO DE ARRHENIUS por Carlos Bravo Diaz, Universidade de Vigo, Espanha

Traduzido por Natanael F. França Rocha, Florianópolis, Brasil  A conservação de alimentos sempre foi uma das principais preocupações do ser humano. Conhecemos, já há bastante tempo, formas de armazenar cereais e também a utilização de azeite para evitar o contato do alimento com o oxigênio do ar e minimizar sua oxidação. Neste blog, podemos encontrar diversos ensaios sobre os métodos tradicionais de conservação de alimentos. Com o passar do tempo, os alimentos sofrem alterações que resultam em variações em diferentes parâmetros que vão definir sua "qualidade". Por exemplo, podem sofrer reações químicas (oxidação lipídica, Maillard, etc.) e bioquímicas (escurecimento enzimático, lipólise, etc.), microbianas (que podem ser úteis, por exemplo a fermentação, ou indesejáveis caso haja crescimento de agentes patogênicos) e por alterações físicas (coalescência, agregação, etc.). Vamos observar agora a tabela abaixo sobre a conservação de alimentos. Por que usamo

Two new proteins connected to plant development discovered by scientists

The discovery in the model plant Arabidopsis of two new proteins, RICE1 and RICE2, could lead to better ways to regulate plant structure and the ability to resist crop stresses such as drought, and ultimately to improve agricultural productivity, according to researchers at Texas A&M AgriLife Research. Credit: Graphic courtesy of Dr. Xiuren Zhang, Texas A&M AgriLife Research The discovery of two new proteins could lead to better ways to regulate plant structure and the ability to resist crop stresses such as drought, thus improving agriculture productivity, according to researchers at Texas A&M AgriLife Research. The two proteins, named RICE1 and RICE2, are described in the May issue of the journal eLife, based on the work of Dr. Xiuren Zhang, AgriLife Research biochemist in College Station. Zhang explained that DNA contains all the information needed to build a body, and molecules of RNA take that how-to information to the sites in the cell where they can be used

Cerque-se de pessoas melhores do que você

by   Guilherme   on   6 de abril de 2015   in   Amigos ,  Valores Reais A vida é feita de  relações . Nenhuma pessoa é uma ilha. Fomos concebidos para evoluir, não apenas do ponto-de-vista coletivo, como componentes da raça humana, cuja inteligência vai se aprimorando com o decorrer dos séculos; mas principalmente da perspectiva individual, como seres viventes que precisam uns dos outros para crescer, se desenvolver e deixar um  legado útil  para os que vivem e os que ainda irão nascer. E, para tirar o máximo proveito do que a vida tem a nos oferecer, é preciso criar uma rede – ou várias redes – de relacionamentos saudáveis, tanto na seara  estritamente familiar  quanto na de  trabalho e negócios , pois são nessas redes que nos apoiamos e buscamos solução para a cura de nossos problemas, conquista de nossas metas pessoais e profissionais, e o conforto em momentos de aflição e tristeza. Por isso, se você quiser melhorar como pessoa, não basta apenas adquirir  alto grau de conhe