Pular para o conteúdo principal

Microbes seen controlling action of host's genes

Duke researchers have discovered that gut microbes can alter the action of their host organism's genes. Mouse intestinal cells are outlined in red, with the cell nuclei stained blue and a protein called transcription factor Hnf4a stained green within the nuclei. Microbes were found to suppress Hnf4a in both mice and fish in a way that could contribute to intestinal diseases.
Credit: James M. Davison

All animals -- from sea sponges to modern-day humans -- evolved in a world already teeming with microbes. These single-celled microorganisms now cover practically every surface of our bodies and are as much a part of our biology as our own tissues and organs. They educate our immune system, regulate our metabolism, and as it turns out, even influence our behavior.

Duke researchers have shown that microbes can control the actions of their animal hosts by manipulating the molecular machinery of animal cells, triggering patterns of gene expression that consequently contribute to health and disease. The work, which was conducted in zebrafish and mice, could have implications for human inflammatory bowel diseases like Crohn's disease and ulcerative colitis. The findings appear in the journal Genome Research.

"Our results suggest that ancient parts of our genome and ancient interactions with our microbes are relevant to modern-day human diseases," said John F. Rawls, Ph.D., senior author of the study and associate professor of molecular genetics and microbiology at Duke University School of Medicine.

In recent years, scientists have uncovered abundant links between our trillions of resident bacteria, viruses and fungi -- known collectively as the microbiome -- and a spectrum of human conditions, ranging from anorexia to diabetes. But Rawls says important gaps remain in our understanding of how these microbes influence health and cause disease in humans as well as other members of the animal kingdom.

Rawls takes what he calls an "evolutionary conservation" approach to identify the genetic underpinnings of distantly related animals that may also be relevant to human health. In this study, Rawls investigated the impact that the microbiome might have on an animal's genome by studying specific regions of the genome that regulate which genes are turned on or off at a given time or in a given tissue. Some of these regions might keep the strands of DNA packaged into tight coils, hiding them from the machinery responsible for translating the genetic code. Others -- known as enhancers -- recruit special proteins called transcription factors to designated sites around a gene to turn it on.

A graduate student in the Rawls lab, James M. Davison, compared these genetic regions in two sets of mice: one that was germ-free and one that had their bellies loaded with microbes. He discovered that a large number of enhancers behaved differently in the presence of microbes. When he looked closer, he found that some of these elements bound a protein called Hnf4a, an ancient animal transcription factor that had previously been implicated in a number of human diseases, including inflammatory bowel diseases, obesity and diabetes.

By comparing gene sequences between different animal species, including humans, mice and zebrafish -- Davison was able to show that throughout evolution, Hnf4a appears to protect against microbial contributions to inflammatory bowel diseases. Davison went on to show that microbes can partially disable Hnf4a in mice and zebrafish and perhaps obstruct its protective role. When Hnf4a is fully disabled, microbes stimulate patterns of gene expression in animals that are associated with inflammatory bowel diseases.

"We found microbes exert a previously unappreciated influence on a transcription factor that shares a very old and interesting place in our heritage as animals, but also is clearly involved in human disease," said Davison, who is lead author of the study. "That we observed similar effects in zebrafish and mice suggests that this is a common feature of host-microbe interactions that might have existed in our common (vertebrate) ancestors."

The researchers still don't know exactly how microbes disable Hnf4a, but they have a number of hypotheses. For example, microbes might somehow block the protein's landing spots on the DNA, or they might inactivate the protein's DNA binding activity by modifying the protein itself. They also don't know if specific subsets of microbes are more manipulative than others. Rawls says that if they can figure that out, it could point to new microbial or pharmaceutical strategies for restoring Hnf4a's protective powers to promote human health.

Postado por David Araripe

Comentários

Postagens mais visitadas deste blog

CONSERVAÇÃO DE ALIMENTOS E A EQUAÇÃO DE ARRHENIUS por Carlos Bravo Diaz, Universidade de Vigo, Espanha

Traduzido por Natanael F. França Rocha, Florianópolis, Brasil  A conservação de alimentos sempre foi uma das principais preocupações do ser humano. Conhecemos, já há bastante tempo, formas de armazenar cereais e também a utilização de azeite para evitar o contato do alimento com o oxigênio do ar e minimizar sua oxidação. Neste blog, podemos encontrar diversos ensaios sobre os métodos tradicionais de conservação de alimentos. Com o passar do tempo, os alimentos sofrem alterações que resultam em variações em diferentes parâmetros que vão definir sua "qualidade". Por exemplo, podem sofrer reações químicas (oxidação lipídica, Maillard, etc.) e bioquímicas (escurecimento enzimático, lipólise, etc.), microbianas (que podem ser úteis, por exemplo a fermentação, ou indesejáveis caso haja crescimento de agentes patogênicos) e por alterações físicas (coalescência, agregação, etc.). Vamos observar agora a tabela abaixo sobre a conservação de alimentos. Por que usamo...

Two new proteins connected to plant development discovered by scientists

The discovery in the model plant Arabidopsis of two new proteins, RICE1 and RICE2, could lead to better ways to regulate plant structure and the ability to resist crop stresses such as drought, and ultimately to improve agricultural productivity, according to researchers at Texas A&M AgriLife Research. Credit: Graphic courtesy of Dr. Xiuren Zhang, Texas A&M AgriLife Research The discovery of two new proteins could lead to better ways to regulate plant structure and the ability to resist crop stresses such as drought, thus improving agriculture productivity, according to researchers at Texas A&M AgriLife Research. The two proteins, named RICE1 and RICE2, are described in the May issue of the journal eLife, based on the work of Dr. Xiuren Zhang, AgriLife Research biochemist in College Station. Zhang explained that DNA contains all the information needed to build a body, and molecules of RNA take that how-to information to the sites in the cell where they can be used...

Fármaco brasileiro aprovado nos Estados Unidos

  Em fotomicrografia, um macho de Schistosoma mansoni, causador da esquistossomose CDC/G. Healy A agência que regula a produção de alimentos e medicamentos dos Estados Unidos, a FDA, concedeu o status de orphan drug para o fármaco imunomodulador P-Mapa, desenvolvido pela rede de pesquisa Farmabrasilis, para uso no tratamento de esquistossomose.  A concessão desse status é uma forma de o governo norte-americano incentivar o desenvolvimento de medicamentos para doenças com mercado restrito, com uma prevalência de até 200 mil pessoas nos Estados Unidos, embora em outros países possa ser maior. Globalmente, a esquistossomose é uma das principais doenças negligenciadas, que atinge cerca de 200 milhões de pessoas no mundo e cerca de 7 milhões no Brasil.  Entre outros benefícios, o status de orphan drug confere facilidades para a realização de ensaios clínicos, após os quais, se bem-sucedidos, o fármaco poderá ser registrado e distribuído nos Estados Unidos, no Brasil e em outro...