Pular para o conteúdo principal

Nobel de Química 2017 premia microscópio crioeletrônico

Nobel de Química 2017 premia microscópio crioeletrônico
[Imagem: Nobel/Ill. N. Elmehed]
Imagens de biomoléculas

O Prêmio Nobel de Química 2017 foi concedido a Jacques Dubochet (Suíça, 1942), Joachim Frank (Alemanha, 1940) e Richard Henderson (Escócia, 1945) "pelo desenvolvimento da microscopia crioeletrônica para a determinação da estrutura de alta resolução de biomoléculas em solução".

O microscópio crioeletrônico é uma evolução do microscópio eletrônico que funciona congelando-se as amostras, simplificando e melhorando as imagens das biomoléculas.

Ele permitiu, por exemplo, visualizar um vírus em escala atômica pela primeira vez.

Microscópio crioeletrônico


Por muito tempo se acreditou que os microscópios eletrônicos fossem adequados para gerar imagens apenas da matéria não-viva porque o poderoso feixe de elétrons destrói o material biológico. Mas, em 1990, Richard Henderson conseguiu usar um microscópio eletrônico para gerar uma imagem tridimensional de uma proteína em resolução atômica, demonstrando o potencial da tecnologia para a biologia e para a área médica - ao menos para estruturas ex vivo.

Joachim Frank tornou a tecnologia aplicável de maneira geral. Entre 1975 e 1986 ele desenvolveu um método de processamento das imagens no qual duas imagens deslocadas do microscópio eletrônico são analisadas e mescladas para revelar uma estrutura tridimensional.

Jacques Dubochet adicionou água ao microscópio eletrônico. A água líquida evapora no vácuo do microscópio eletrônico, o que faz com que as biomoléculas colapsem. No início da década de 1980, Dubochet conseguiu vitrificar a água - ele resfriou a água com tanta rapidez que ela se solidificou em sua forma líquida em torno da amostra biológica, permitindo que as biomoléculas conservassem sua forma natural mesmo no vácuo. É esse choque de temperatura - criogenia - que deu nome ao microscópio. As estruturas biológicas morrem, naturalmente, mas podem ser analisadas em sua condição estrutural original.

A resolução atômica tão desejada foi alcançada em 2013 para as amostras biológicas, e os pesquisadores agora podem produzir rotineiramente estruturas tridimensionais de biomoléculas. Nos últimos anos, temos visto imagens de praticamente tudo em resolução molecular e atômica, desde proteínas que causam resistência aos antibióticos, até a superfície do vírus zika.

Fonte: http://www.inovacaotecnologica.com.br/noticias/noticia.php?artigo=nobel-quimica-2017-premia-microscopio-crioeletronico&id=010175171004#.WdUpOLKGPIV

Postado por David Araripe

Comentários

Postagens mais visitadas deste blog

CONSERVAÇÃO DE ALIMENTOS E A EQUAÇÃO DE ARRHENIUS por Carlos Bravo Diaz, Universidade de Vigo, Espanha

Traduzido por Natanael F. França Rocha, Florianópolis, Brasil  A conservação de alimentos sempre foi uma das principais preocupações do ser humano. Conhecemos, já há bastante tempo, formas de armazenar cereais e também a utilização de azeite para evitar o contato do alimento com o oxigênio do ar e minimizar sua oxidação. Neste blog, podemos encontrar diversos ensaios sobre os métodos tradicionais de conservação de alimentos. Com o passar do tempo, os alimentos sofrem alterações que resultam em variações em diferentes parâmetros que vão definir sua "qualidade". Por exemplo, podem sofrer reações químicas (oxidação lipídica, Maillard, etc.) e bioquímicas (escurecimento enzimático, lipólise, etc.), microbianas (que podem ser úteis, por exemplo a fermentação, ou indesejáveis caso haja crescimento de agentes patogênicos) e por alterações físicas (coalescência, agregação, etc.). Vamos observar agora a tabela abaixo sobre a conservação de alimentos. Por que usamo...

Two new proteins connected to plant development discovered by scientists

The discovery in the model plant Arabidopsis of two new proteins, RICE1 and RICE2, could lead to better ways to regulate plant structure and the ability to resist crop stresses such as drought, and ultimately to improve agricultural productivity, according to researchers at Texas A&M AgriLife Research. Credit: Graphic courtesy of Dr. Xiuren Zhang, Texas A&M AgriLife Research The discovery of two new proteins could lead to better ways to regulate plant structure and the ability to resist crop stresses such as drought, thus improving agriculture productivity, according to researchers at Texas A&M AgriLife Research. The two proteins, named RICE1 and RICE2, are described in the May issue of the journal eLife, based on the work of Dr. Xiuren Zhang, AgriLife Research biochemist in College Station. Zhang explained that DNA contains all the information needed to build a body, and molecules of RNA take that how-to information to the sites in the cell where they can be used...

Fármaco brasileiro aprovado nos Estados Unidos

  Em fotomicrografia, um macho de Schistosoma mansoni, causador da esquistossomose CDC/G. Healy A agência que regula a produção de alimentos e medicamentos dos Estados Unidos, a FDA, concedeu o status de orphan drug para o fármaco imunomodulador P-Mapa, desenvolvido pela rede de pesquisa Farmabrasilis, para uso no tratamento de esquistossomose.  A concessão desse status é uma forma de o governo norte-americano incentivar o desenvolvimento de medicamentos para doenças com mercado restrito, com uma prevalência de até 200 mil pessoas nos Estados Unidos, embora em outros países possa ser maior. Globalmente, a esquistossomose é uma das principais doenças negligenciadas, que atinge cerca de 200 milhões de pessoas no mundo e cerca de 7 milhões no Brasil.  Entre outros benefícios, o status de orphan drug confere facilidades para a realização de ensaios clínicos, após os quais, se bem-sucedidos, o fármaco poderá ser registrado e distribuído nos Estados Unidos, no Brasil e em outro...