Pular para o conteúdo principal

Circuitos de DNA fazem computação biológica

Circuitos de DNA fazem computação biológica
Impressão artística das portas biológicas interconectadas. [Imagem: University of Washington]
Computação in vivo

Uma equipe de pesquisadores de biologia sintética demonstrou um novo método para processamento de informações digitais em células vivas, análogo às portas lógicas usadas nos circuitos eletrônicos.

Eles fabricaram um conjunto de genes sintéticos que funcionam nas células como portas NOR, comumente usadas em eletrônica, um circuito que recebe duas entradas e transmite um sinal positivo apenas se ambas as entradas forem negativas. Como se mostraram funcionalmente completas, essas portas NOR biológicas estão prontas para serem montadas em diferentes arranjos para compor circuitos de processamento de informações.

Tudo foi feito usando moléculas de DNA - em vez de componentes de silício e solda - e dentro de células de levedura. Os circuitos são os maiores já criados até hoje em células eucariontes, que, como as células humanas, contêm um núcleo e outras estruturas que permitem comportamentos complexos.

"Embora programas simples implementados em células nunca irão rivalizar com a velocidade ou a precisão da computação em silício, os programas genéticos podem interagir diretamente com o ambiente da célula," disse o professor Eric Klavins, da Universidade de Washington, nos EUA.

"Por exemplo, as células reprogramadas em um paciente poderiam tomar decisões terapêuticas direcionadas nos tecidos mais relevantes, evitando a necessidade de diagnósticos complexos e abordagens de amplo espectro para o tratamento," acrescentou o pesquisador, vislumbrando uma possibilidade futura ainda distante.
Circuitos de DNA fazem computação biológica
Com a integração alcançada, os circuitos podem começar a executar comportamentos realmente úteis. [Imagem: Miles W. Gander et al. - 10.1038/NCOMMS15459]
Computação biológica

Cada porta NOR celular consiste em um gene com três trechos programáveis de DNA - dois funcionam como entradas e o outro mostra o resultado. Os pesquisadores usaram uma tecnologia relativamente nova, conhecida como CRISPR-Cas9, para alvejar essas sequências de DNA específicas dentro de uma célula. A proteína Cas9 funciona como um porteiro molecular no circuito, sentado no DNA e determinando se uma porta específica estará ativa ou não.

Se uma porta estiver ativa, ela expressa um sinal que direciona a Cas9 para desativar outra porta dentro do circuito. Desta forma, é possível "ligar" as portas para criar programas lógicos na célula.

O que diferencia esse experimento dos anteriores, segundo a equipe, é a escala e a complexidade dos circuitos montados, que incluíram até sete portas NOR montadas em série ou em paralelo.

Nessas dimensões, os circuitos podem começar a executar comportamentos realmente úteis, com a possibilidade de obter informações de diferentes sensores ambientais e executar cálculos para decidir sobre a resposta correta.

Entre as aplicações imaginadas estão células imunes projetadas para sentir e responder a biomarcadores de câncer ou biossensores celulares que possam facilmente diagnosticar doenças infecciosas.


Postado por David Araripe

Comentários

Postagens mais visitadas deste blog

CONSERVAÇÃO DE ALIMENTOS E A EQUAÇÃO DE ARRHENIUS por Carlos Bravo Diaz, Universidade de Vigo, Espanha

Traduzido por Natanael F. França Rocha, Florianópolis, Brasil  A conservação de alimentos sempre foi uma das principais preocupações do ser humano. Conhecemos, já há bastante tempo, formas de armazenar cereais e também a utilização de azeite para evitar o contato do alimento com o oxigênio do ar e minimizar sua oxidação. Neste blog, podemos encontrar diversos ensaios sobre os métodos tradicionais de conservação de alimentos. Com o passar do tempo, os alimentos sofrem alterações que resultam em variações em diferentes parâmetros que vão definir sua "qualidade". Por exemplo, podem sofrer reações químicas (oxidação lipídica, Maillard, etc.) e bioquímicas (escurecimento enzimático, lipólise, etc.), microbianas (que podem ser úteis, por exemplo a fermentação, ou indesejáveis caso haja crescimento de agentes patogênicos) e por alterações físicas (coalescência, agregação, etc.). Vamos observar agora a tabela abaixo sobre a conservação de alimentos. Por que usamo...

Two new proteins connected to plant development discovered by scientists

The discovery in the model plant Arabidopsis of two new proteins, RICE1 and RICE2, could lead to better ways to regulate plant structure and the ability to resist crop stresses such as drought, and ultimately to improve agricultural productivity, according to researchers at Texas A&M AgriLife Research. Credit: Graphic courtesy of Dr. Xiuren Zhang, Texas A&M AgriLife Research The discovery of two new proteins could lead to better ways to regulate plant structure and the ability to resist crop stresses such as drought, thus improving agriculture productivity, according to researchers at Texas A&M AgriLife Research. The two proteins, named RICE1 and RICE2, are described in the May issue of the journal eLife, based on the work of Dr. Xiuren Zhang, AgriLife Research biochemist in College Station. Zhang explained that DNA contains all the information needed to build a body, and molecules of RNA take that how-to information to the sites in the cell where they can be used...

Fármaco brasileiro aprovado nos Estados Unidos

  Em fotomicrografia, um macho de Schistosoma mansoni, causador da esquistossomose CDC/G. Healy A agência que regula a produção de alimentos e medicamentos dos Estados Unidos, a FDA, concedeu o status de orphan drug para o fármaco imunomodulador P-Mapa, desenvolvido pela rede de pesquisa Farmabrasilis, para uso no tratamento de esquistossomose.  A concessão desse status é uma forma de o governo norte-americano incentivar o desenvolvimento de medicamentos para doenças com mercado restrito, com uma prevalência de até 200 mil pessoas nos Estados Unidos, embora em outros países possa ser maior. Globalmente, a esquistossomose é uma das principais doenças negligenciadas, que atinge cerca de 200 milhões de pessoas no mundo e cerca de 7 milhões no Brasil.  Entre outros benefícios, o status de orphan drug confere facilidades para a realização de ensaios clínicos, após os quais, se bem-sucedidos, o fármaco poderá ser registrado e distribuído nos Estados Unidos, no Brasil e em outro...