Pular para o conteúdo principal

There are millions of protein factories in every cell. Surprise, they’re not all the same

Ribosomes, which build a protein (black) from an RNA strand (blue),
 may specialize in making particular sets of proteins.

The plant that built your computer isn't churning out cars and toys as well. But many researchers think cells' crucial protein factories, organelles known as ribosomes, are interchangeable, each one able to make any of the body's proteins. Now, a provocative study suggests that some ribosomes, like modern factories, specialize to manufacture only certain products. Such tailored ribosomes could provide a cell with another way to control which proteins it generates. They could also help explain the puzzling symptoms of certain diseases, which might arise when particular ribosomes are defective.

Biologists have long debated whether ribosomes specialize, and some remain unconvinced by the new work. But other researchers say they are sold on the finding, which relied on sophisticated analytical techniques. "This is really an important step in redefining how we think about this central player in molecular biology," says Jonathan Dinman, a molecular biologist at the University of Maryland in College Park.

A mammalian cell may harbor as many as 10 million ribosomes, and it can devote up to 60% of its energy to constructing them from RNA and 80 different types of proteins. Although ribosomes are costly, they are essential for translating the genetic code, carried in messenger RNA (mRNA) molecules, into all the proteins the cell needs. "Life evolved around the ribosome," Dinman says.

The standard view has been that a ribosome doesn't play favorites with mRNAs—and therefore can synthesize every protein variety. But for decades, some researchers have reported hints of customized ribosomes. For example, molecular and developmental biologist Maria Barna of Stanford University in Palo Alto, California, and colleagues reported in 2011 that mice with too little of one ribosome protein have short tails, sprout extra ribs, and display other anatomical defects. That pattern of abnormalities suggested that the protein shortage had crippled ribosomes specialized for manufacturing proteins key to embryonic development.

Definitive evidence for such differences has been elusive, however. "It's been a really hard field to make progress in," says structural and systems biologist Jamie Cate of the University of California (UC), Berkeley. For one thing, he says, measuring the concentrations of proteins in naturally occurring ribosomes has been difficult.

In their latest study, published online last week in Molecular Cell, Barna and her team determined the abundances of various ribosome proteins with a method known as selected reaction monitoring, which depends on a type of mass spectrometry, a technique for sorting molecules by their weight. When the researchers analyzed 15 ribosomal proteins in mouse embryonic stem cells, they found that nine of the proteins were equally common in all ribosomes. However, four were absent from 30% to 40% of the organelles, suggesting that those ribosomes were distinctive. Among 76 ribosome proteins the scientists measured with another mass spectrometry-based method, seven varied enough to indicate ribosome specialization.

Barna and colleagues then asked whether they could identify the proteins that the seemingly distinctive ribosomes made. A technique called ribosome profiling enabled them to pinpoint which mRNAs the organelles were reading—and thus determine their end products. The specialized ribosomes often concentrated on proteins that worked together to perform particular tasks. One type of ribosome built several proteins that control growth, for example. A second type churned out all the proteins that allow cells to use vitamin B12, an essential molecule for metabolism. That each ribosome focused on proteins crucial for a certain function took the team by surprise, Barna says. "I don't think any of us would have expected this."

Ribosome specialization could explain the symptoms of several rare diseases, known as ribosomopathies, in which the organelles are defective. In Diamond-Blackfan anemia, for instance, the bone marrow that generates new blood cells is faulty, but patients also often have birth defects such as a small head and misshapen or missing thumbs. These seemingly unconnected abnormalities might have a single cause, the researchers suggest, if the cells that spawn these different parts of the body during embryonic development carry the same specialized ribosomes.

Normal cells might be able to dial protein production up or down by adjusting the numbers of these specialized factories, providing "a new layer of control of gene expression," Barna says. Why cells need another mechanism for controlling gene activity isn't clear, says Cate, but it could help keep cells stable if their environment changes.

He and Dinman say the use of "state-of-the-art tools" makes the results from Barna's team compelling. However, molecular biologist Harry Noller of UC Santa Cruz doubts that cells would evolve to reshuffle the array of proteins in the organelles. "The ribosome is very expensive to synthesize for the cell," he says. If cells are going to tailor their ribosomes, "the cheaper way to do it" would entail modifying a universal ribosome structure rather than building custom ones.

Source: http://www.sciencemag.org/news/2017/06/there-are-millions-protein-factories-every-cell-surprise-they-re-not-all-same

Postado por David Araripe

Comentários

Postagens mais visitadas deste blog

CONSERVAÇÃO DE ALIMENTOS E A EQUAÇÃO DE ARRHENIUS por Carlos Bravo Diaz, Universidade de Vigo, Espanha

Traduzido por Natanael F. França Rocha, Florianópolis, Brasil  A conservação de alimentos sempre foi uma das principais preocupações do ser humano. Conhecemos, já há bastante tempo, formas de armazenar cereais e também a utilização de azeite para evitar o contato do alimento com o oxigênio do ar e minimizar sua oxidação. Neste blog, podemos encontrar diversos ensaios sobre os métodos tradicionais de conservação de alimentos. Com o passar do tempo, os alimentos sofrem alterações que resultam em variações em diferentes parâmetros que vão definir sua "qualidade". Por exemplo, podem sofrer reações químicas (oxidação lipídica, Maillard, etc.) e bioquímicas (escurecimento enzimático, lipólise, etc.), microbianas (que podem ser úteis, por exemplo a fermentação, ou indesejáveis caso haja crescimento de agentes patogênicos) e por alterações físicas (coalescência, agregação, etc.). Vamos observar agora a tabela abaixo sobre a conservação de alimentos. Por que usamo...

Two new proteins connected to plant development discovered by scientists

The discovery in the model plant Arabidopsis of two new proteins, RICE1 and RICE2, could lead to better ways to regulate plant structure and the ability to resist crop stresses such as drought, and ultimately to improve agricultural productivity, according to researchers at Texas A&M AgriLife Research. Credit: Graphic courtesy of Dr. Xiuren Zhang, Texas A&M AgriLife Research The discovery of two new proteins could lead to better ways to regulate plant structure and the ability to resist crop stresses such as drought, thus improving agriculture productivity, according to researchers at Texas A&M AgriLife Research. The two proteins, named RICE1 and RICE2, are described in the May issue of the journal eLife, based on the work of Dr. Xiuren Zhang, AgriLife Research biochemist in College Station. Zhang explained that DNA contains all the information needed to build a body, and molecules of RNA take that how-to information to the sites in the cell where they can be used...

Fármaco brasileiro aprovado nos Estados Unidos

  Em fotomicrografia, um macho de Schistosoma mansoni, causador da esquistossomose CDC/G. Healy A agência que regula a produção de alimentos e medicamentos dos Estados Unidos, a FDA, concedeu o status de orphan drug para o fármaco imunomodulador P-Mapa, desenvolvido pela rede de pesquisa Farmabrasilis, para uso no tratamento de esquistossomose.  A concessão desse status é uma forma de o governo norte-americano incentivar o desenvolvimento de medicamentos para doenças com mercado restrito, com uma prevalência de até 200 mil pessoas nos Estados Unidos, embora em outros países possa ser maior. Globalmente, a esquistossomose é uma das principais doenças negligenciadas, que atinge cerca de 200 milhões de pessoas no mundo e cerca de 7 milhões no Brasil.  Entre outros benefícios, o status de orphan drug confere facilidades para a realização de ensaios clínicos, após os quais, se bem-sucedidos, o fármaco poderá ser registrado e distribuído nos Estados Unidos, no Brasil e em outro...