Pular para o conteúdo principal

Linguagem de alto nível para programar bactérias

Programação biológica
Engenheiros, biólogos e cientistas da computação se juntaram para criar mais uma linguagem de programação que permite projetar rapidamente circuitos complexos codificados em moléculas de DNA.
Isso significa que, usando uma linguagem de programação de alto nível, é possível dar novas funções para as células vivas - fazer com que façam algo que queremos.
Usando esta linguagem, não é necessário ser um geneticista para escrever um programa para a função que se deseja da célula bacteriana, como detectar e responder a determinadas condições ambientais. Para isso, o próprio programa gera uma sequência de DNA que torna a célula capaz de executar a função.
"É literalmente uma linguagem de programação para bactérias", explica o professor Christopher Voigt, do MIT, nos EUA. "Você usa uma linguagem baseada em texto, exatamente como você programa um computador. Em seguida, compila esse texto e o transforma em uma sequência de DNA que você põe dentro da célula, e o programa roda dentro da célula."
Voigt e seus colegas usaram a linguagem de programação biológica para construir circuitos que podem detectar até três entradas e responder de maneiras diferentes a cada combinação.

Linguagem de programação bacteriana
A linguagem de programação bacteriana é baseada em Verilog, uma linguagem muito usada para programar chips de computador.
Para criar uma versão que funcione com células, a equipe projetou portas lógicas e sensores que podem ser codificados no DNA de uma célula bacteriana. Os sensores podem detectar compostos diferentes, tais como oxigênio ou glucose, bem como luz, temperatura, acidez e outras condições ambientais. Os programadores de bactérias também podem adicionar seus próprios sensores.
Com a ferramenta, os pesquisadores programaram 60 circuitos com funções diferentes, e 45 deles funcionaram corretamente na primeira vez que foram testados. Vários foram projetados para medir uma ou mais condições ambientais e um especificamente foi projetado para avaliar três entradas diferentes e, em seguida, reagir com base na prioridade de cada uma.
O mais complexo deles é o maior circuito biológico já construído, contendo sete portas lógicas e cerca de 12.000 pares de bases de DNA.

Bactérias computacionais
As aplicações para esse tipo de programação biológica incluem o projeto de células bacterianas capazes de produzir fármacos quando detectam um tumor, por exemplo, ou a criação de células de levedura que possam deter seu próprio processo de fermentação se começarem a aparecer muitos subprodutos tóxicos.
A equipe planeja construir uma interface para sua linguagem de programação bacteriana e disponibilizá-la na web.

Fonte: http://www.inovacaotecnologica.com.br/noticias/noticia.php?artigo=linguagem-alto-nivel-faz-programas-bacterias&id=010150160408#.VwuqOMfS1sN


Comentários

Postagens mais visitadas deste blog

CONSERVAÇÃO DE ALIMENTOS E A EQUAÇÃO DE ARRHENIUS por Carlos Bravo Diaz, Universidade de Vigo, Espanha

Traduzido por Natanael F. França Rocha, Florianópolis, Brasil  A conservação de alimentos sempre foi uma das principais preocupações do ser humano. Conhecemos, já há bastante tempo, formas de armazenar cereais e também a utilização de azeite para evitar o contato do alimento com o oxigênio do ar e minimizar sua oxidação. Neste blog, podemos encontrar diversos ensaios sobre os métodos tradicionais de conservação de alimentos. Com o passar do tempo, os alimentos sofrem alterações que resultam em variações em diferentes parâmetros que vão definir sua "qualidade". Por exemplo, podem sofrer reações químicas (oxidação lipídica, Maillard, etc.) e bioquímicas (escurecimento enzimático, lipólise, etc.), microbianas (que podem ser úteis, por exemplo a fermentação, ou indesejáveis caso haja crescimento de agentes patogênicos) e por alterações físicas (coalescência, agregação, etc.). Vamos observar agora a tabela abaixo sobre a conservação de alimentos. Por que usamo...

Two new proteins connected to plant development discovered by scientists

The discovery in the model plant Arabidopsis of two new proteins, RICE1 and RICE2, could lead to better ways to regulate plant structure and the ability to resist crop stresses such as drought, and ultimately to improve agricultural productivity, according to researchers at Texas A&M AgriLife Research. Credit: Graphic courtesy of Dr. Xiuren Zhang, Texas A&M AgriLife Research The discovery of two new proteins could lead to better ways to regulate plant structure and the ability to resist crop stresses such as drought, thus improving agriculture productivity, according to researchers at Texas A&M AgriLife Research. The two proteins, named RICE1 and RICE2, are described in the May issue of the journal eLife, based on the work of Dr. Xiuren Zhang, AgriLife Research biochemist in College Station. Zhang explained that DNA contains all the information needed to build a body, and molecules of RNA take that how-to information to the sites in the cell where they can be used...

Fármaco brasileiro aprovado nos Estados Unidos

  Em fotomicrografia, um macho de Schistosoma mansoni, causador da esquistossomose CDC/G. Healy A agência que regula a produção de alimentos e medicamentos dos Estados Unidos, a FDA, concedeu o status de orphan drug para o fármaco imunomodulador P-Mapa, desenvolvido pela rede de pesquisa Farmabrasilis, para uso no tratamento de esquistossomose.  A concessão desse status é uma forma de o governo norte-americano incentivar o desenvolvimento de medicamentos para doenças com mercado restrito, com uma prevalência de até 200 mil pessoas nos Estados Unidos, embora em outros países possa ser maior. Globalmente, a esquistossomose é uma das principais doenças negligenciadas, que atinge cerca de 200 milhões de pessoas no mundo e cerca de 7 milhões no Brasil.  Entre outros benefícios, o status de orphan drug confere facilidades para a realização de ensaios clínicos, após os quais, se bem-sucedidos, o fármaco poderá ser registrado e distribuído nos Estados Unidos, no Brasil e em outro...